MUTATIONAL BIOSYNTHESIS OF BUTIROSIN ANALOGS

Sir:

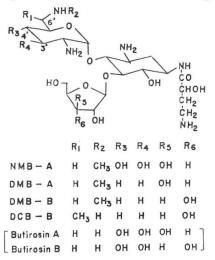
Butirosins¹¹ are broad-spectrum antibiotics with activity against *Pseudomonas* strains and are less toxic than other aminoglycoside antibiotics. Studies²¹ on the inactivating mechanism of aminoglycoside antibiotics prompted us to prepare new butirosin analogs effective against resistant Gramnegative bacteria.

We now communicate the preparation of 6'-Nmethyl and 6'-C-methyl derivatives of butirosins *via* the technique of "mutational biosynthesis".^{3~61}

A number of non-butirosins-producing mutants were derived from Bacillus circulans MCRL 5001, an isolate in our laboratory and a producer of butirosins and 6'-deamino-6'-hydroxybutirosins,⁷¹ by treatment with N-methyl-N'-nitro-N-nitrosoguanidine (1,000 µg/ml for 30 minutes) using an agar-plug technique⁸⁾ with *Pseudomonas* aeruginosa as a test organism. Two of these non-producers, strains MCRL 5003 and MCRL 5004, were found to produce butirosins when the culture medium was supplemented with neamine. These strains were designated neamine-negative mutants. One of these mutants, MCRL 5004, also produced butirosins in the presence of exogenous 2-deoxystreptamine (DOS). In contrast, strain MCRL 5003 produced DOS in the fermentation broth, but could not utilize DOS for biosynthesis of the butirosins, as described in a succeeding communication.⁹⁾

The neamine analogs $(100 \sim 250 \ \mu g/ml)$ were added to actively growing culture $(1 \sim 2 \text{ days})$ of the neamine-negative mutants, MCRL 5003 and MCRL 5004, and the culture was further incubated for $4 \sim 6$ days until antibacterial potency reached a maximum. Both strains converted neamine analogs such as 6'-N-methylneamine (I), 3',4'-dideoxyneamine (II), 3',4'-dideoxy-6'-Nmethylneamine (III) and 3',4'-dideoxy-6'-Cmethylneamine (IV) to the corresponding analogs of butirosins A (xylo-isomer) and B (ribo-isomer). 6'-N-Methylbutirosins (NMB-A and -B), 3',4'dideoxybutirosins,^{10,11)} 3',4'-dideoxy-6'-N-methylbutirosins (DMB-A and -B) and 3',4'-dideoxy-6'-C-methylbutirosins (DCB-A and -B) were produced in the cultured broth supplemented with I, II, III and IV, respectively. In the case of II, III and IV, the production of ribo-isomers was predominant, whereas bioconversion of I gave mainly a xylo-isomer.

These butirosin analogs were isolated from the cultured broths by adsorption on Amberlite IRC-50 (NH₄⁺ form) resin followed by elution with 1.0 N ammonia. The products were then separated into *xylo*- and *ribo*-isomers by repeating column chromatography on Amberlite CG-50 (NH₄⁺ form) and CM-Sephadex C-25 (NH₄⁺ form) eluted with dilute ammonia. Further purification was accomplished by column chromatography on Dowex 1×2 (OH⁻ form) resin developed with water. Four new butirosin analogs thus obtained showed the following physicochemical properties:


<u>NMB-A</u>, m.p. 188 ~ 192°C (dec.); $[\alpha]_D^{25} + 24.3^\circ$ (*c* 0.7, H₂O); IR (KBr), 1635 and 1560 cm⁻¹ (amide); [Calcd. for C₂₂H₄₃N₅O₁₂·2H₂CO₃·2H₂O: C 39.51, H 7.05, N 9.60. Found: C 39.62, H 6.58, N 9.71].

<u>DMB-A</u>, m.p. 175~180°C (dec.); $[\alpha]_D^{25} + 20.7^\circ$ (*c* 0.3, H₂O); IR (KBr), 1630 and 1560 cm⁻¹ (amide); [Calcd. for C₂₂H₄₃N₅O₁₀·2H₂CO₃·2H₂O: C 41.32, H 7.37, N 10.04. Found: C 41.08, H 6.98, N 10.01].

<u>DMB-B</u>, m.p. 190~195°C (dec.); $[\alpha]_D^{25} + 25.2^{\circ}$ (*c* 0.5, H₂O); IR (KBr), 1630 and 1560 cm⁻¹ (amide); [Calcd. for C₂₂H₄₃N₅O₁₀·2H₂CO₃·2H₂O: C 41.32, H 7.37, N 10.04. Found: C 41.10, H 6.90, N 9.73].

<u>DCB-B</u>, m.p. 188 ~ 192°C (dec.); $[\alpha]_{13}^{25} + 23.0^{\circ}$ (*c* 0.3, H₂O); IR (KBr), 1630 and 1540 cm⁻¹ (amide); [Calcd. for C₂₂H₄₃N₅O₁₀·H₂CO₃·H₂O: C 44.73, H 7.67, N 11.34. Found: C 44.44, H 7.27, N 11.29]. The structures of these antibiotics shown in Fig. 1 were confirmed by mass,

Fig. 1. Structures of new butirosin analogs

Test organisms	Inactivating enzymes ^{12,13)}	Minimal inhibitory concentration (µg/ml)*				
		NMB-A	DMB-A	DMB-B	DCB-B	Butirosin A
Escherichia coli K–12	4	0.4	0.4	0.8	0.8	0.4
<i>E. coli</i> K–12 ML1630	APH(3')-I	1.6	1.6	1.6	1.6	1.6
E. coli JR35/C600	APH(3')–I	0.8	0.8	0.8	0.8	0.4
<i>E. coli</i> K–12 R5	AAC(6')-1	0.4	0.4	0.8	6.3	100
<i>E. coli</i> JR66/W677	APH(3')-II	>100	0.8	1.6	1.6	>100
	AAD(2'')					
E. coli A20107	APH(3')-II	100	1.6	1.6	1.6	100
E. coli A20732	AAD(2'')	0.8	0.8	0.8	0.8	0.8
E. coli A20895	AAC(3)	1.6	1.6	1.6	1.6	0.8
Providencia stuartii #164 A20894	AAC(2')	>100	25	25	12.5	>100
Pseudomonas aeruginosa A ₃		1.6	0.2	0.2	0.2	0.4
P. aeruginosa GN315	AAC(6')-4	>100	1.6	1.6	6.3	>100

Table 1. Antibacterial activities of NMB-A, DMB-A, DMB-B, DCB-B and butirosin A against aminoglycoside-resistant bacteria

* Agar dilution method; Heart infusion agar (Eiken), 37°C, 18 hours.

¹H–NMR, ¹³C–NMR spectra and chemically by periodate oxidation and analyses of the acid hydrolyzates.

The *in vitro* antibacterial activities of new butirosin analogs NMB-A, DMB-A, DMB-B and DCB-B are shown in Table 1. Among them, DMB-A and -B were broadly active against various types of aminoglycoside-resistant bacteria including the strains having 6'-N-acetylating enzymes, AAC(6')-1 and AAC(6')-4, as expected.

The details of the present work will be published elsewhere.

Acknowledgements

We are grateful to Drs. H. UMEZAWA, Institute of Microbial Chemistry, and H. KAWAGUCHI, Bristol-Banyu Reseach Institute, Ltd., through whose courtesy the strains with a known mechanism of resistance were obtained. Thanks are also due to Dr. T. OKUDA in this company for his kind advice and encouragement.

> Katsuo Takeda Akio Kinumaki Tamotsu Furumai Totaro Yamaguchi Satoshi Ohshima Yukio Ito

Microbiological Reseach Laboratory Tanabe Seiyaku Co. Ltd., Toda, Saitama, Japan

(Received October 20, 1977)

References

- DION, H. W.; P. W. K. WOO, N. E. WILLMER, D. L. KERN, J. ONAGA & S. A. FUSARI: Butirosin, a new aminoglycosidic antibiotic complex: Isolation and characterization. Antimicr. Agents & Chemoth. 2: 84~88, 1972
- UMEZAWA, H.: Biochemical mechanism of resistance to aminoglycosidic antibiotics. Drug Action and Drug Resistance in Bacteria, Univ. Tokyo Press, pp. 211~248, 1975
- SHIER, W.T.; K.L. RINEHART, Jr. & D. GOTTLIEB: Preparation of four new antibiotics from a mutant of *Streptomyces fradiae*. Proc. Nat. Acad. Sci. U. S. 63: 198~204, 1969
- 4) NAGAOKA, K. & A. L. DEMAIN: Mutational biosynthesis of a new antibiotic, streptomutin A, by an idiotroph of *Streptomyces griseus*. J. Antibiotics 28: 627~635, 1975
- TAYLOR, H. D. & H. SCHMITZ: Antibiotics derived from a mutant of *Bacillus circulans*. J. Antibiotics 29: 532~535, 1976
- NOGAMI, I. *et al.* (Takeda); Japan kokai 76– 1,694, Jan. 8, 1976
- TSUKIURA, H.; K. SAITO, S. KOBARU, M. KO-NISHI & H. KAWAGUCHI: Aminoglycoside antibiotics. IV. BU-1709 E₁ and E₂, new aminoglycoside antibiotics related to the butirosins. J. Antibiotics 26: 386~388, 1973
- RAPER, K.B.; D.F. ALEXANDER & R.D. COGHILL: Penicillin. II. Natural variation and penicillin production in *Penicillium notatum* and allied species. J. Bact. 48: 639~659, 1944
- TAKEDA, K.; K. AIHARA, T. FURUMAI & Y. ITO: An approach to the biosynthetic pathway

of butirosins and the related antibiotics. J. Antibiotics $31:250 \sim 253$, 1978

- IKEDA, D.; T. TSUCHIYA, S. UMEZAWA, H. UMEZAWA & M. HAMADA: Synthesis of 3', 4'-dideoxybutirosin B. J. Antibiotics 26: 307~309, 1973
- SAEKI, H.; Y. SHIMADA, Y. OHASHI, M. TAJIMA, S. SUGAWARA & E. OHKI: Synthesis of 3', 4'dideoxybutirosin A, active against butirosin resistant bacteria. Chem. Pharm. Bull. Japan 22: 1145~1150, 1974
- 12) MITSUHASHI, S.: Proposal for a rational nomen-

clature for phenotype, genotype, and aminoglycoside-aminocyclitol modifying enzymes. Drug Action and Drug Resistance in Bacteria. Univ. Tokyo Press, pp. $269 \sim 275$, 1975

13) KAWAGUCHI, H.; K. TOMITA, T. HOSHIYA, T. MIYAKI, K. FUJISAWA, M. KIMEDA, K. NUMATA, M. KONISHI, H. TSUKIURA, M. HATORI & H. KOSHIYAMA: Aminoglycoside antibiotics. V. The 4'-deoxybutirosins (Bu-1975C₁ and C₂), new aminoglycoside antibiotics of bacterial origin. J. Antibiotics 27: 460~470, 1974